

Carbohydrate Research 262 (1994) 311-322

Structural investigation of the capsular polysaccharide of *Escherichia coli* O101: K103: H⁻ using bacteriophage degradation and NMR spectroscopy

M. Ruth Grue, Haralambos Parolis *, Lesley A.S. Parolis

School of Pharmaceutical Sciences, Rhodes University, Grahamstown 6140 (South Africa)

Received 9 February 1994; accepted 1 April 1994

Abstract

NMR spectroscopy was performed on the depyruvated capsular antigen of *E. coli* K103 and on the oligosaccharide obtained by depolymerisation of the native polysaccharide with a viral-borne endoglycanase. This capsular polysaccharide is the only one to be co-expressed with O group 101 and joins a small group of unusual capsular polysaccharides which possess pyruvic acid as the only acidic function. The primary structure was shown to be composed of the repeating unit:

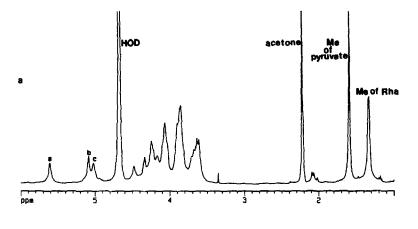
→ 3)-
$$\alpha$$
-D-Gal p -(1 → 4)- α -D-Gal p -(1 → 3)- α -L-Rha p -(1 → 2,3 \vee Pvr(S)

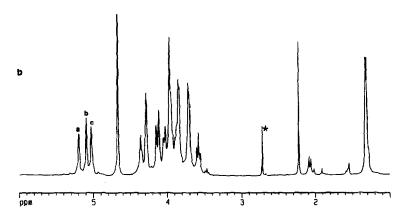
Keywords: E. coli; Capsular polysaccharide; Bacteriophage depolymerization; NMR spectroscopy; Pyruvate

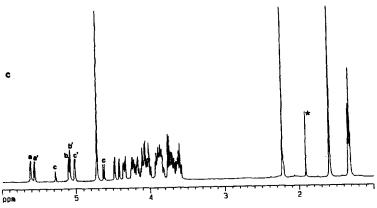
1. Introduction

Escherichia coli O101: K103: H⁻ is unique in that it is the only member of the O101 series which produces a capsule [1]. E. coli capsular antigens have been subdivided into two groups based on their physical, chemical, and microbial characteristics [1]. Co-expression with O-antigen 101 places the K103 capsular

^{*} Corresponding author.


antigen among the Group I polysaccharides [1]. Unlike the other polysaccharides of this group, it has a low molecular weight and is not heat stable. It is, however, acidic and its structure is *Klebsiella*-like, both characteristics of Group I polysaccharides. *E. coli* K103 has been implicated in human appendicitis.


2. Results and discussion


Isolation, composition, and linkage analysis of the capsular antigen.—E. coli K103 bacteria were grown on Mueller-Hinton agar and the acidic capsular polysaccharide (PS) was isolated by extraction of the cells using aqueous 1% phenol, and was purified by precipitation with cetyltrimethylammonium bromide. Gel permeation chromatography (GPC) of the PS on Sephacryl S500 showed that it was polydisperse, with the two main fractions having average molecular weights M_{\star} 1.32 \times 10⁷ and 3.63×10^4 . Sugar analysis showed the two fractions to be identically constituted. Polydispersity has been reported [2] for other E. coli capsular polysaccharides and has been ascribed to the formation of large micellar aggregates by these lipid-bound polysaccharides. When the polysaccharides are treated with dilute acid, the labile phosphodiester bridges linking the polysaccharide chains to lipid are hydrolysed, the micelles are broken down, and much lower molecular weights are observed on GPC (see formation of depyruvated polysaccharide **DPS** later). Hydrolysis of the PS followed by GLC-MS examination of the derived alditol acetates showed that Gal and Rha were present in the molar ratio 2:1. Methanolysis of the **PS** followed by reduction of the methoxycarbonyl groups, hydrolysis, and GLC examination of the derived alditol acetates showed no alteration of the sugar ratio, indicating the absence of uronic acid. Reaction of the products of methanolvsis of the PS with (CF₃CO)₂O followed by GLC analysis on a chiral column [3] established the configuration of both Gal residues as being D and that of Rha as L.

The ¹H NMR spectrum of the sodium salt of the PS in D₂O (Fig. 1a) contained H-1 signals at δ 5.61, 5.09, and 5.02, a signal for the methyl protons of pyruvate at δ 1.59, and a signal for H-6 of a deoxy sugar at δ 1.33. The acid sensitivity of the pyruvic substituent, particularly at elevated temperatures, precluded the NMR spectroscopic examination of the PS in its acidic form. Interpretation of the NMR spectra of the sodium form of the PS proved difficult because of a significant degree of line broadening caused by the high viscosity of the sample. The PS was therefore depyruvated by treatment with aq 1% CH₃CO₂H at 100°C for 1 h, followed by purification by GPC on Sephacryl S400. All subsequent analyses and 2D NMR spectroscopic studies were carried out on the depyruvated polysaccharide (DPS) thus obtained. The DPS was found by GPC on Sephacryl S400 to have M_r 2.2 × 10⁴. The ¹H NMR spectrum of the DPS (Fig. 1b) confirmed the presence of three monosaccharides in the repeating unit, one being a 6-deoxy sugar. The ¹³C NMR spectrum complemented the ¹H NMR data with signals for C-1 at 96.67, 101.23, and 102.63 ppm, and a signal for C-6 of a deoxy sugar at 17.60 ppm.

Methylation analysis of the **DPS** showed the presence of 2,4-di-O-methylrhamnose, 2,4,6-tri-O-methylgalactose, and 2,3,6-tri-O-methylgalactose, indicating that

Figs. 1a-c. ¹H NMR spectra of **a**, K103 polysaccharide **PS**; **b**, depyruvated K103 polysaccharide **DPS**; **c**, phage degradation product **P2**. * Unassigned signals.

the **DPS** contained 3-substituted Rha, 3-substituted Gal, and 4-substituted Gal. **DPS** was incompletely methylated by the Hakomori procedure [4] and the partially methylated polysaccharide was therefore remethylated by the method of Kuhn [5].

2D NMR studies of the E. coli K103 DPS.—The sequence of the residues in the repeating unit was established by 2D NMR experiments, which also confirmed the identity of the constituent residues and the glycosylation sites in the polysaccharide. The residues in the repeating unit were labelled a-c in order of decreasing chemical shift of their anomeric protons, as shown in Fig. 1b. The ¹H resonances of all three residues were readily traced via their cross-peaks in the COSY [6] and 2D Homonuclear Hartmann-Hahn (HOHAHA) [7] spectra, while the ¹³C resonances were assigned by comparing the ¹H assignments with the ¹H-¹³C correlation data obtained from an HMQC [8] experiment. These data are shown in Table 1. Comparison of the chemical shift data for residues a-c with those reported for methyl glycosides [9,10] permitted identification of residue a as 4-substituted Gal, residue b as 3-substituted Rha, and residue c as 3-substituted Gal. The sequence of the residues in the repeating unit was established by an HMBC [11] experiment. Correlations between H-1 of a and C-3 of b, between H-1 of b and C-3 of c, and between H-1 of c and C-4 of a were clearly visible. The structure of the repeating unit of the **DPS** is thus:

$$\rightarrow$$
 4)- α -D-Gal p -(1 \rightarrow 3)- α -L-Rha p -(1 \rightarrow 3)- α -D-Gal p (1 \rightarrow

The position of the pyruvic acetal in the repeating unit of the **PS** was established from a study of the hexasaccharide isolated from the bacteriophage depolymerisation of the **PS**.

Bacteriophage-mediated degradation of the PS.—A bacteriophage isolated from sewage water and propagated on the K103 bacteria was used to depolymerise the PS. The hexasaccharide (P2) obtained, representing two repeating units of the polysaccharide, was purified by GPC on Sephacryl S200 and Bio-Gel P4. The ¹H NMR spectrum of P2 (Fig. 1c, Table 2) contained five H-1 signals each integrating for one proton, and two fractional H-1 signals in the ratio of 1:3 integrating for

Residue		Proton or carbon							
		1	2	3	4	5	6a	6b	
\rightarrow 4)- α -D-Gal (a)	Н	5.20	3.95	4.05	4.15	4.28	3.85	3.85	
	С	96.67	69.31	69.89	79.57	71.81	60.98		
\rightarrow 3)- α -L-Rha (b)	Н	5.10	4.28	3.96	3.58	3.87	1.32		
	C	102.63	67.71	76.49	71.20	70.03	17.60		
\rightarrow 3)- α -D-Gal (c)	Н	5.05	3.97	3.98	4.13	4.36	3.72	3.72	
	C	101.23	68.78	77.85	69.70	71.81	61.33		

Table 1 NMR data ^a for *E. coli* K103 **DPS**

^a Chemical shifts in ppm with acetone as internal standard, δ 2.23 and 31.07 ppm for ¹H and ¹³C, respectively.

one proton. These fractional signals at δ 5.25 and 4.63, relating to the α and β forms of the reducing end of **P2**, were further identified as Gal by their $J_{1,2}$ values of 3.1 and 7.4 Hz [9,10]. The anomeric signals were labelled, in order of decreasing chemical shift, as **a**, **a'**, **c**_{α}, **b**, **b'**, **c'**, and **c**_{β}, in order to relate them to the anomeric resonances of the residues already identified in **DPS**. Figs. 1a, 1b, and 1c show the ¹H NMR spectra of the **PS**, the **DPS**, and **P2**, respectively. The H-1 signal for **b** showed slight broadening, as did the H-6 signal for this residue, due to its proximity to the reducing end of the oligosaccharide. A signal for the methyl

Table 2 NMR data a for P2

Н ³ <i>J</i> ^b С	5.62 3.4	4.09	3	4	5	6a	6b
$^3J^{\mathrm{b}}$		4.09					
$^3J^{\mathrm{b}}$		4.09					
	3.4		4.24	4.48	4.17	3.86	3.86
С			3.6				
	94.14	73.49	73.60	75.20	72.77	60.44	
Н	5.56	4.01	4.19	4.42	4.10	3.75	3.75
$^3J^{\rm b}$	3.9	9.6	2.6				
C	93.92	72,73	74.83	67.89	72.33	61.41	
Н	5.10	4.36	4.05	3.64	3.89	1.32	
$^3J^{b}$							
C	102.57	67.06	75.84	70.80	69.83	17.36	
Н	5.08	4.33	4.03	3.62	3.88	1.33	
$^3J^{b}$							
C	102.49	67.03	75.62	70.87	69.83	17.42	
Н	5.02	3.91	3.83	4.07	4.24	3.66	3.66
$^3J^{b}$							
C	100.48	68.45	78.21	69.59	71.44	62.10	
н	5.28	3.93	3.90	4.06	4.10	3.70	3.70
3_{I}^{2} b		2.,,3	2.75			5.75	20
Ċ	92.90	68.20	77.89	69.82	71.11	61.65	
н	4.63	3.60	3.72	4.02	3.73	3.76	3.76
		2.00	5.72	7.02	3.13	5.70	5.70
-		71.79	81.22	69.14	75 69	61 48	
	³ J b C H 3 J b C H 3 J b C H 3 J b	3 J b 3.9 C 93.92 H 5.10 3 J b 1.8 C 102.57 H 5.08 3 J b 1.9 C 102.49 H 5.02 3 J b 4.0 C 100.48 H 5.28 3 J b 3.1 C 92.90 H 4.63 3 J b 7.4	$^{3}J^{b}$ 3.9 9.6 C 93.92 72.73 $^{4}J^{b}$ 5.10 4.36 3.4 C 102.57 67.06 $^{3}J^{b}$ 1.8 3.4 C 102.57 67.06 $^{4}J^{b}$ 1.9 2.6 C 102.49 67.03 $^{3}J^{b}$ 4.0 C 100.48 68.45 $^{4}J^{b}$ 3.1 C 92.90 68.20 $^{4}J^{b}$ 3.60 3.60 3.7.4	3 J b 3.9 9.6 2.6 C 93.92 72.73 74.83 H 5.10 4.36 4.05 3 J b 1.8 3.4 C 102.57 67.06 75.84 H 5.08 4.33 4.03 3 J b 1.9 2.6 C 102.49 67.03 75.62 H 5.02 3.91 3.83 3 J b 4.0 C 100.48 68.45 78.21 H 5.28 3.93 3.90 3 J b 3.1 C 92.90 68.20 77.89 H 4.63 3.60 3.72 3 J b 7.4	$^{3}J^{b}$ 3.9 9.6 2.6 C 93.92 72.73 74.83 67.89 $^{4}D^{b}D^{c}D^{c}D^{c}D^{c}D^{c}D^{c}D^{c}D^{c$	$^3J^{\ b}$ 3.9 9.6 2.6 C 93.92 72.73 74.83 67.89 72.33 0.6 0.89 0.6 0.89	$^3J^{\ b}$ 3.9 9.6 2.6 C 93.92 72.73 74.83 67.89 72.33 61.41 $^3J^{\ b}$ 1.8 3.4 1.8 3.4 1.9

^a Chemical shifts in ppm with acetone as internal standard, δ 2.23 and 31.07 ppm for ¹H and ¹³C, respectively.

^b ¹H-¹H Coupling constants in Hz.

protons of pyruvate occurred at δ 1.59 (2 × CH₃) and signals for H-6 of the deoxy sugars occurred at δ 1.32 and 1.33, respectively. The ¹³C spectrum of **P2** contained C-1 signals at 92.90 (fractional), 93.92, 94.14, 96.89 (fractional), 100.48, 102.49, and 102.57 ppm as well as two signals for the pyruvic acetalic carbons at 108.60 and 108.72 ppm. Methyl signals for deoxy sugars occurred at 17.42 and 17.36 ppm, and for pyruvate at 23.17 and 23.37 ppm. Carbonyl signals for pyruvate occurred at 176.45 and 177.18 ppm.

2D NMR studies of P2.—The sequence of the residues in the P2 unit was established by 2D NMR experiments in the same way as for the DPS, using COSY, HOHAHA, DEPT-HMQC [12] (acquired with a read pulse angle of 60° to show CH₂ peaks negative, and CH and CH₃ peaks positive), HETCOR [13], HMQC-TOCSY [14], and HMBC [11] experiments. The COSY spectrum is shown in Fig. 2.

Residues a $[\rightarrow 2,3,4]$ - α -D-Gal] and a' [2,3- α -D-Gal].—The ¹H resonances for both of these residues were easily traced via their cross-peaks in the COSY and HOHAHA spectra. The H-4/5 cross-peaks were small, as expected for Gal residues, due to small $J_{4,5}$ values. Carbon resonances were assigned by comparing the ¹H assignments with the ¹H-¹³C correlation data obtained from both the HMQC and HETCOR experiments. It was necessary to use both of these correlation experiments because of the amount of signal overlap occurring in various regions of both spectra. The only marked difference in the chemical shift values for the two residues was in those for the C-4 resonance — residue a is substituted at this position and the carbon resonance is accordingly at a much lower field than that for residue a'.

Residues **b** and **b**' $[\rightarrow 3)$ - α -L-Rha].—The ¹H and ¹³C resonances for these two residues were very similar. The ¹H anomeric signal for residue **b** showed slight broadening due to its proximity to the reducing end of **P2**. All ¹H resonances were assigned readily from the COSY spectrum despite the partial overlap from the H-3/4 cross-peak onwards, and the carbon resonances were assigned as for residues **a** and **a**'.

Residues c' and c_{α} [$\rightarrow 3$]- α -D-Gal] and [$\rightarrow 3$]- α -D-GalOH].—The COSY and HOHAHA coupling patterns for these two residues were very similar. ¹H resonances for both residues could be traced as far as H-4 from the cross-peaks in the COSY spectrum, and H-5 and H-6 for c' could be identified from the HOHAHA spectrum because a small H-4/5 cross-peak was present. However, no H-4/5 cross-peak was visible for c_{α} . Since c_{α} is present in smaller quantity than the other residues, the ¹H and ¹³C peaks for this residue are significantly smaller than those for the other residues. Once all other ¹³C signals had been assigned, it was possible to identify C-5 and C-6 signals for c_{α} from the ¹³C spectrum, using their comparative heights for confirmation, the corresponding ¹H resonances being assigned from the HETCOR spectrum by correlation. Other ¹³C resonances were also assigned by correlation using both the HETCOR and HMQC spectra.

Residue c_{β} [\rightarrow 3)- β -D-GalOH].—The COSY and HOHAHA coupling patterns for this residue differ markedly from those for residues a, a', c', and c_{α} because of the β -anomeric configuration. ¹H resonances could be identified as far as H-4 from both the COSY and HOHAHA spectra, and ¹³C resonances were assigned

from the HMQC and HETCOR data by correlation. The C-5 and C-6 resonances were assigned by difference, permitting the H-5 and H-6 signals to be identified from the $^{1}H^{-13}C$ correlation data. A further distinction between residue c_{β} and the other Gal residues occurred in the shift position for C-5, which occurs downfield relative to the C-5 signals for the α -Gal residues, as expected [9].

Fig. 2. COSY contour plot for P2 showing the region δ 3.5-5.7 for f_1 and f_2 . a1,2 connotes the cross-peak between H-1 and H-2 of residue a, etc. The 1D ¹H spectrum is projected along the f_2 axis.

Table 3		
Two- and three-bond	¹ H- ¹³ C correlations	(HMBC) for P2

Residue	Proton	Correlation to
a	H-1	75.84 (b, C-3), 73.60 (a, C-3), 72.77 (a, C-5)
	H-2	73.60 (a, C-3)
	H-3	73.49 (a, C-2), 75.20 (a, C-4)
	H-4	100.48 (c', C-1), 73.49 (a, C-2), 73.60 (a, C-3)
	H-5	75.20 (a, C-4), 60.44 (a, C-6)
a'	H-1	75.62 (b', C-3), 74.83 (a', C-3), 72.33 (a', C-5)
	H-2	74.83 (a', C-3)
	H-4	72.73 (a', C-2), 74.83 (a', C-3)
b	H-1	77.89 (\mathbf{c}_{α} , C-3), 81.22 (\mathbf{c}_{β} , C-3), 67.06 (\mathbf{b} , C-2), 75.84 (\mathbf{b} , C-3),
		69.83 (b, C-5)
	H-2	75.84 (b , C-3), 70.80 (b , C-4)
	H-3	94.14 (a , C-1), 70.80 (b , C-4)
b'	H-1	78.21 (c', C-3), 67.03 (b', C-2), 75.62 (b', C-3), 69.83 (b', C-5)
	H-3	93.92 (a', C-1)
c'	H-1	75.20 (a, C-4), 78.21 (c', C-3), 71.44 (c', C-5)
	H-2	78.21 (c', C-3)
	H-3	102.49 (b', C-1), 69.59 (c', C-4)
c _a	H-1	77.89 (\mathbf{c}_{α} , C-3), 71.11 (\mathbf{c}_{α} , C-5)
_	H-3	102.57 (b , C-1)
c _B	H-1	75.69 (c _B , C-5)
-	H-3	102.57 (b, C-1)

The sequence of the residues in **P2** was determined using an HMBC experiment. Clear correlations could be seen between H-1 of **a** and C-3 of **b**, between H-1 of **a** and C-3 of **b**, between H-1 of **b** and C-3 of both c_{α} and c_{β} , between H-1 of **b** and C-3 of **c**, between H-1 of **c** and C-4 of **a**, and between C-1 of **c** and H-4 of **a**, indicating a linkage pattern as shown in the structure below. Other two- and three-bond correlations are listed in Table 3.

The pyruvic acid substituent.—The two 4-substituted Gal residues, $\bf a$ and $\bf a'$ in P2, were shown to be substituted at O-2 and O-3 by the downfield shifts of their C-2 and C-3 resonances as compared to those of residue $\bf a$ in the DPS. O-2 and O-3 must therefore be the location of the pyruvic substituent in $\bf a$ and $\bf a'$. Unfortunately no correlations between the acetalic carbons of the pyruvic substituents and H-2 and H-3 of residues $\bf a$ and $\bf a'$ were visible in the HMBC spectrum. For this reason, and because the 1 H resonances for the methyl protons of the pyruvic moieties were identical, it was not possible to distinguish between the two pyruvic substituents. The absolute configuration of the acetalic carbon was established from a ROESY [15] experiment performed on P2. NOEs were clearly visible between the H-3 signals of both $\bf a$ and $\bf a'$ and the methyl protons of the pyruvic acetals, indicating that the pyruvic acid had the $\bf S$ configuration [16]. The NOEs expected for $\bf R$ and $\bf S$ configurations, respectively, are shown in Fig. 3.

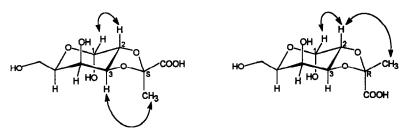


Fig. 3. Expected NOEs for R and S configurations for a 2,3-linked pyruvic substituent.

Additional NOEs, listed in Table 4, served to confirm the linkages assigned from the HMBC data.
The structure of **P2** can thus be written as:

Table 4 NOE data for P2

Residue	Proton	NOE to
a	H-1	4.36 (b, H-2), 4.05 (b, H-3), 4.09 (a, H-2), 4.24 (a, H-3)
	H-3	5.62 (a, H-1), 4.48 (a, H-4), 3.86 (a, H-6), 1.59 (pyr)
	H-4	5.02 (c', H-1), 4.17 (a, H-5), 3.86 (a, H-6)
a'	H-1	4.33 (b', H-2), 4.03 (b', H-3), 4.01 (a', H-2), 4.19 (a', H-3)
	H-3	5.56 (a', H-1), 4.42 (a', H-4), 1.59 (pyr)
	H-4	4.10 (a', H-5), 3.75 (a', H-6)
b	H-1	$3.93 (c_{\alpha}, H-2), 3.90 (c_{\alpha}, H-3), 4.06 (c_{\alpha}, H-4), 3.60 (c_{\beta}, H-2),$
		$3.72 (c_{\beta}, H-3), 4.02 (c_{\beta}, H-4), 4.36 (b, H-2)$
	H-2	5.62 (a, H-1), 5.10 (b, H-1), 4.05 (b, H-3)
	H-6	4.05 (b, H-3), 3.64 (b, H-4), 3.87 (b, H-5)
b'	H-1	3.91 (c', H-2), 3.83 (c', H-3), 4.07 (c', H-4), 4.33 (b', H-2)
	H-2	5.56 (a', H-1), 5.08 (b', H-1), 4.03 (b', H-3)
	H-6	4.03 (b', H-3), 3.62 (b', H-4), 3.87 (b', H-5)
c'	H-1	4.48 (a, H-4), 3.91 (c', H-2), 3.83 (c', H-3)
	H-5	3.83 (c', H-3), 4.07 (c', H-4)
c _a	H-1	$3.93 (c_{\alpha}, H-2), 3.90 (c_{\alpha}, H-3)$
	H-4	5.10 (b, H-1), 3.93 (c_{α} , H-2), 3.90 (c_{α} , H-3)
c _β	H-1	$3.60 (c_{B}, H-2), 3.73 (c_{B}, H-3)$
•	H-4	$5.10 (\mathbf{b}, \text{H}-1), 3.60 (\mathbf{c}_{B}, \text{H}-2), 3.72 (\mathbf{c}_{B}, \text{H}-3)$

and the structure of the repeating unit of the E. coli K103 polysaccharide is therefore as shown in the Abstract.

This is the fourth *E. coli* capsular polysaccharide found to contain a pyruvic acid substituent as the sole acidic function [2,17,18]. Although pyruvic acid is a common component of bacterial polysaccharides [19], this is only the second 2,3-linked pyruvic acetal to be reported in the *E. coli* series, the other being found in *E. coli* K33 [20].

3. Experimental

General methods.—Analytical GLC was performed on a Hewlett-Packard 5890A gas chromatograph, fitted with a flame-ionisation detector and a 3392A recording integrator, with He as carrier gas. A J&W Scientific fused-silica DB-17 bondedphase capillary column (30 m \times 0.25 mm; film thickness, 0.25 μ m) was used for separating alditol acetates (100 kPa, temperature programme: 180°C for 2 min, then 2°C min⁻¹ to 240°C). A J&W Scientific fused-silica DB-225 bonded-phase capillary column (30 m \times 0.25 mm; film thickness, 0.25 μ m) was used for separating partially methylated additol acetates (100 kPa, 205°C, isothermal). A Machery-Nagel fused-silica FS-Lipodex A capillary column (50 m × 0.25 mm; film thickness, $0.25 \mu m$) was used for separating trifluoroacetates of methyl glycosides (150 kPa. temperature programme: 80°C for 1 min, then 2°C min⁻¹ to 150°C). The identities of all derivatives were determined by comparison with authentic standards and confirmed by GLC-MS on a Hewlett-Packard 5988A instrument, using the appropriate column. Spectra were recorded at 70 eV and an ion-source temperature of 200°C. GPC was performed on dextran-calibrated columns (1.6 \times 65 cm) of Sephacryl S500 and Sephacryl S400, using 0.1 M sodium acetate buffer (pH 5.00) as eluent. Compounds were detected by refractive index.

Samples were hydrolysed with 4 M CF₃CO₂H for 1 h at 125°C. Alditol acetates were prepared by reduction of the products in aqueous solutions of hydrolysates with NaBH₄ for 1 h followed by acetylation with 2:1 Ac₂O-pyridine for 1 h at 100°C. Samples were methanolysed by refluxing with methanolic 3% HCl for 16 h. The polysaccharide was depyruvated by treatment with 1% CH₃CO₂H at 100°C for 1 h, followed by dialysis and freeze-drying to give **DPS**. Native and methylated **DPS** samples were carboxyl-reduced with NaBH₄ in dry MeOH after methanolysis. Methylations were carried out on the **DPS** using potassium dimsyl [4] and MeI in Me₂SO, followed by a 48-h Kuhn methylation in DMF with Ag₂O and MeI [5]. For determination of absolute configuration of the constituent monosaccharides, a sample of the **DPS** (10 mg) was methanolysed for 24 h, the product was dissolved in THF (0.5 mL), and two 600- μ L additions of (CF₃CO)₂O were made at 10-min intervals with stirring [21]. The excess of reagent was evaporated and the derived trifluoroacetates were analysed by GLC as described.

Preparation of the K103 polysaccharide.—An authentic culture of E. coli O101: K103: H⁻ was obtained from Dr. I. Ørskov (Copenhagen) and propagated on Mueller-Hinton agar. The capsular polysaccharide was extracted with aq 1%

phenol, separated from the cells by ultracentrifugation, and purified by precipitation with cetyltrimethylammonium bromide.

Bacteriophage depolymerisation of K103 polysaccharide.—A bacteriophage that could be propagated on E. coli K103 bacteria was isolated from sewage water and was used to depolymerise the capsular polysaccharide. The bacteriophage titre was increased by successive tube and flask lyses [22] until a solution containing 4.0×10^{14} plaque-forming units was obtained. The polysaccharide (300 mg) was dissolved in the bacteriophage solution and incubated at 37°C. After 3 days, the mixture was concentrated and dialysed (mol wt cut-off, 3500) against distilled water (8×50 mL). The combined diffusate was applied first to a column of Sephacryl S200 and eluted with aq 0.1 M sodium acetate buffer (pH 5.00). The main fraction isolated was then applied to a column of Bio-Gel P4 and eluted with water to afford the hexasaccharide P2 (30 mg).

NMR spectroscopy.—Samples were deuterium-exchanged by freeze-drying several times from D₂O and then examined as solutions in 99.99% D₂O containing a trace of acetone as internal standard (δ 2.23 for ¹H and 31.07 ppm for ¹³C). Spectra were recorded at 30°C on a Bruker AMX-400 spectrometer equipped with an X32 computer. The parameters used for 2D experiments were as follows: COSY and HOHAHA [512 × 2048 data matrix, zero-filled to 1024 data points in t_1 ; 48 or 56 scans per t_1 value; spectral width, 2008 Hz; recycle delay, 1.2 s (COSY) or 1.0 s (HOHAHA); mixing time, 89 ms (HOHAHA); unshifted sine-bell filtering in t_1 and t_2 (COSY); shifted sine-squared filtering in t_1 and t_2 (HOHAHA)]; ROESY $\{256 \times 4096 \text{ data matrix, zero-filled to } 1024 \text{ data points in } t_1; 104 \text{ scans} \}$ per t_1 value; spectral width, 3846 Hz; recycle delay, 2.0 s; shifted sine-squared filtering in t_1 and t_2 ; carrier frequency placed at far left-hand side of spectrum to minimise COSY and HOHAHA cross-peaks [23]); DEPT-HMQC and HMQC-TOCSY [256 \times 4096 data matrix, zero-filled to 1024 data points in t_1 ; 64 or 76 scans per t_1 value; recycle delay, 1.0 s; fixed delay, 3.45 ms; mixing delay, 89 ms (HMQC-TOCSY); spectral width, 14 086 Hz in t_1 and 2016 Hz in t_2 ; shifted sine-squared filtering in t_1 and t_2 ; read pulse angle, 60°]; HETCOR [128 × 4096 data matrix, zero-filled to 1024 data points in t_1 ; 1500 scans per t_1 value; recycle delay, 1.0 s; fixed delay, 3.45 ms; spectral width, 2200 Hz in t_1 and 10 638 Hz in t_2 ; shifted sine-squared filtering in t_1 and t_2]; HMBC [512 × 4096 data matrix, zero-filled to 1024 data points in t_1 ; 64 scans per t_1 value; recycle delay, 1.0 s; fixed delay, 3.45 ms; spectral width, 20 828 Hz in t_1 and 2024 Hz in t_2 ; shifted sine-squared filtering in t_1 and t_2].

Acknowledgments

We thank Dr. I. Ørskov (Copenhagen) for the test strain of *E. coli* O101: K103: H⁻, the Foundation for Research Development (Pretoria) for financial support (to H.P.) and for a doctoral bursary (to M.R.G.), and the Stella and Paul Loewenstein Trust for a doctoral bursary (to M.R.G.).

References

- [1] I. Ørskov, F. Ørskov, B. Jann, and K. Jann, Bacteriol. Rev., 41 (1977) 667-710.
- [2] A.N. Anderson, H. Parolis, and L.A.S. Parolis, Carbohydr. Res., 163 (1987) 81-90, and references therein.
- [3] W.A. König, P. Mischnik-Lübbecke, B. Brassat, S. Lutz, and G. Wenz, *Carbohydr. Res.*, 183 (1988) 11-17.
- [4] L.R. Phillips and B.A. Fraser, Carbohydr. Res., 90 (1981) 149-152.
- [5] R. Kuhn, H. Trischmann, and I. Löw, Angew. Chem., 67 (1955) 32.
- [6] A. Bax and R. Freeman, J. Magn. Reson., 44 (1981) 542-561.
- [7] A. Bax and D.G. Davis, J. Magn. Reson., 65 (1985) 355-360.
- [8] A. Bax and S. Subramanian, J. Magn. Reson., 67 (1986) 565-569.
- [9] J.H. Bradbury and G.A. Jenkins, Carbohydr. Res., 126 (1984) 125-157.
- [10] K. Bock and H. Thørgersen, Annu. Rep. NMR Spectrosc., 13 (1982) 1-57.
 [11] A. Bax and M.F. Summers, J. Am. Chem. Soc., 108 (1986) 2093-2094.
- [12] H. Kessler, P. Schmieder, and M. Kurtz, J. Magn. Reson., 85 (1989) 400–405.
- [13] D.L. Rabenstein and W. Guo, Anal. Chem., 60 (1988) 1R.
- [14] L. Lerner and A. Bax, J. Magn. Reson., 69 (1986) 365-380.
- [15] J. Breg, D. Romun, J.F.G. Vliegenthart, G. Strecker, and J. Montreuil, Carbohydr. Res., 183 (1988) 19-34.
- [16] C. Jones, Carbohydr. Res., 198 (1990) 353-357.
- [17] A.H. de Bruin, H. Parolis, and L.A.S. Parolis, Carbohydr. Res., 233 (1992) 195-204.
- [18] M.R. Grue, H. Parolis, and L.A.S. Parolis, 258 (1994) 233-241.
- [19] P.J. Garegg, B. Lindberg, and I. Kvarnström, Carbohydr. Res., 77 (1979) 71-78.
- [20] B.A. Lewis, unpublished results.
- [21] A. Berthold, W.Y. Li, and D. Armstrong, Carbohydr. Res., 201 (1990) 175-184.
- [22] G.G.S. Dutton, J.L. Di Fabio, D.M. Leek, E.H. Merrifield, J.R. Nunn, and A.M. Stephen, Carbohydr. Res., 97 (1981) 127-138.
- [23] A. Bax and D.G. Davis, J. Magn. Reson., 63 (1985) 207-213.